186 research outputs found

    Privacy Preservation by Disassociation

    Full text link
    In this work, we focus on protection against identity disclosure in the publication of sparse multidimensional data. Existing multidimensional anonymization techniquesa) protect the privacy of users either by altering the set of quasi-identifiers of the original data (e.g., by generalization or suppression) or by adding noise (e.g., using differential privacy) and/or (b) assume a clear distinction between sensitive and non-sensitive information and sever the possible linkage. In many real world applications the above techniques are not applicable. For instance, consider web search query logs. Suppressing or generalizing anonymization methods would remove the most valuable information in the dataset: the original query terms. Additionally, web search query logs contain millions of query terms which cannot be categorized as sensitive or non-sensitive since a term may be sensitive for a user and non-sensitive for another. Motivated by this observation, we propose an anonymization technique termed disassociation that preserves the original terms but hides the fact that two or more different terms appear in the same record. We protect the users' privacy by disassociating record terms that participate in identifying combinations. This way the adversary cannot associate with high probability a record with a rare combination of terms. To the best of our knowledge, our proposal is the first to employ such a technique to provide protection against identity disclosure. We propose an anonymization algorithm based on our approach and evaluate its performance on real and synthetic datasets, comparing it against other state-of-the-art methods based on generalization and differential privacy.Comment: VLDB201

    Scalable Probabilistic Similarity Ranking in Uncertain Databases (Technical Report)

    Get PDF
    This paper introduces a scalable approach for probabilistic top-k similarity ranking on uncertain vector data. Each uncertain object is represented by a set of vector instances that are assumed to be mutually-exclusive. The objective is to rank the uncertain data according to their distance to a reference object. We propose a framework that incrementally computes for each object instance and ranking position, the probability of the object falling at that ranking position. The resulting rank probability distribution can serve as input for several state-of-the-art probabilistic ranking models. Existing approaches compute this probability distribution by applying a dynamic programming approach of quadratic complexity. In this paper we theoretically as well as experimentally show that our framework reduces this to a linear-time complexity while having the same memory requirements, facilitated by incremental accessing of the uncertain vector instances in increasing order of their distance to the reference object. Furthermore, we show how the output of our method can be used to apply probabilistic top-k ranking for the objects, according to different state-of-the-art definitions. We conduct an experimental evaluation on synthetic and real data, which demonstrates the efficiency of our approach

    T-Crowd: Effective Crowdsourcing for Tabular Data

    Full text link
    Crowdsourcing employs human workers to solve computer-hard problems, such as data cleaning, entity resolution, and sentiment analysis. When crowdsourcing tabular data, e.g., the attribute values of an entity set, a worker's answers on the different attributes (e.g., the nationality and age of a celebrity star) are often treated independently. This assumption is not always true and can lead to suboptimal crowdsourcing performance. In this paper, we present the T-Crowd system, which takes into consideration the intricate relationships among tasks, in order to converge faster to their true values. Particularly, T-Crowd integrates each worker's answers on different attributes to effectively learn his/her trustworthiness and the true data values. The attribute relationship information is also used to guide task allocation to workers. Finally, T-Crowd seamlessly supports categorical and continuous attributes, which are the two main datatypes found in typical databases. Our extensive experiments on real and synthetic datasets show that T-Crowd outperforms state-of-the-art methods in terms of truth inference and reducing the cost of crowdsourcing

    APRIL: Approximating Polygons as Raster Interval Lists

    Full text link
    The spatial intersection join an important spatial query operation, due to its popularity and high complexity. The spatial join pipeline takes as input two collections of spatial objects (e.g., polygons). In the filter step, pairs of object MBRs that intersect are identified and passed to the refinement step for verification of the join predicate on the exact object geometries. The bottleneck of spatial join evaluation is in the refinement step. We introduce APRIL, a powerful intermediate step in the pipeline, which is based on raster interval approximations of object geometries. Our technique applies a sequence of interval joins on 'intervalized' object approximations to determine whether the objects intersect or not. Compared to previous work, APRIL approximations are simpler, occupy much less space, and achieve similar pruning effectiveness at a much higher speed. Besides intersection joins between polygons, APRIL can directly be applied and has high effectiveness for polygonal range queries, within joins, and polygon-linestring joins. By applying a lightweight compression technique, APRIL approximations may occupy even less space than object MBRs. Furthermore, APRIL can be customized to apply on partitioned data and on polygons of varying sizes, rasterized at different granularities. Our last contribution is a novel algorithm that computes the APRIL approximation of a polygon without having to rasterize it in full, which is orders of magnitude faster than the computation of other raster approximations. Experiments on real data demonstrate the effectiveness and efficiency of APRIL; compared to the state-of-the-art intermediate filter, APRIL occupies 2x-8x less space, is 3.5x-8.5x more time-efficient, and reduces the end-to-end join cost up to 3 times.Comment: 12 page
    • …
    corecore